Gene Regulation and Epigenetic Effects of Lead Exposure

Authors

  • Francisco Javier Sánchez-Martín Department of Environmental Health and Center for Environmental Genetics University of Cincinnati College of Medicine Cincinnati, Ohio 45267. USA Author
  • Alvaro Puga Department of Environmental Health and Center for Environmental Genetics University of Cincinnati College of Medicine Cincinnati, Ohio 45267. USA Author

Keywords:

DNA methylation, Brain, Gene expression, Lead, Heavy metals

Abstract

Embryonic life is a time when organisms are most sensitive to environmental signals, responding to cues with extreme phenotypic plasticity. Developmental plasticity however, often gives rise to maladaptive pathophysiological consequences in the embryo or in later adult life, as is the case with the responses to lead exposure. Developmental exposure to lead (Pb), an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder.  Long-term effects observed after early life exposure include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. We have developed an embryonic stem cell model of Pb exposure during neural differentiation that promises to be useful to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents. We also used DNA methylation analyses to determine whether perinatal exposure to lead acetate in mice was associated with persistent DNA methylation changes. We find a highly significant sex- and tissue-dependent change in DNA methylation in the brains of exposed mice, negatively correlated with gene expression levels. Females showing greater hypermethylation than males. Lead exposure during embryonic life appears to have a sex- and tissue-specific effect that may produce pathological or physiological deviations from the epigenetic plasticity of unexposed mice.  Further analyses to correlate DNA methylation and regulatory gene expression changes will be crucial to understand the mechanisms of lead neurotoxicity. 

         Views | Downloads: 31 / 10

Downloads

Download data is not yet available.

References

Ademuyiwa, O., Ugbaja, R. N., Idumebor, F., and Adebawo, O. (2005). Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta, Nigeria. Lipids Health Dis. 4, 19.

Adeniyi, F. A., and Anetor, J. I. (1999). Lead-poisoning in two distant states of Nigeria: an indication of the real size of the problem. Afr. J. Med. Med. Sci. 28(1-2), 107-112.

Auger, C. J., and Auger, A. P. (2013). Permanent and plastic epigenesis in neuroendocrine systems. Front Neuroendocrinol. 34(3), 190-197.

Baranowska-Bosiacka, I., Struzynska, L., Gutowska, I., Machalinska, A., Kolasa, A., Klos, P., Czapski, G. A., Kurzawski, M., Prokopowicz, A., Marchlewicz, M., Safranow, K., Machalinski, B., Wiszniewska, B., and Chlubek, D. (2013). Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus. Toxicology 303, 187-200.

Barker, D. J. (1999). Fetal origins of cardiovascular disease. Ann. Med. 31 Suppl 1, 3-6.

Barker, D. J., Winter, P. D., Osmond, C., Margetts, B., and Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet 2(8663), 577-580.

Basha, M. R., Wei, W., Bakheet, S. A., Benitez, N., Siddiqi, H. K., Ge, Y. W., Lahiri, D. K., and Zawia, N. H. (2005). The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J. Neurosci. 25(4), 823-829.

Bellinger, D., Leviton, A., Allred, E., and Rabinowitz, M. (1994). Pre- and postnatal lead exposure and behavior problems in school-aged children. Environ. Res. 66(1), 12-30.

Bihaqi, S. W., Huang, H., Wu, J., and Zawia, N. H. (2011). Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer's disease. J. Alzheimers. Dis. 27(4), 819-833.

Boulle, F., van den Hove, D. L., Jakob, S. B., Rutten, B. P., Hamon, M., van, O. J., Lesch, K. P., Lanfumey, L., Steinbusch, H. W., and Kenis, G. (2012). Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol. Psychiatry 17(6), 584-596.

Brubaker, C. J., Dietrich, K. N., Lanphear, B. P., and Cecil, K. M. (2010). The influence of age of lead exposure on adult gray matter volume. Neurotoxicology 31(3), 259-266.

Brubaker, C. J., Schmithorst, V. J., Haynes, E. N., Dietrich, K. N., Egelhoff, J. C., Lindquist, D. M., Lanphear, B. P., and Cecil, K. M. (2009). Altered myelination and axonal integrity in adults with childhood lead exposure: a diffusion tensor imaging study. Neurotoxicology 30(6), 867-875.

Callaghan, C. K., and Kelly, A. M. (2013). Neurotrophins play differential roles in short and long-term recognition memory. Neurobiol. Learn. Mem. 104C, 39-48.

Cecil, K. M., Dietrich, K. N., Altaye, M., Egelhoff, J. C., Lindquist, D. M., Brubaker, C. J., and Lanphear, B. P. (2011). Proton magnetic resonance spectroscopy in adults with childhood lead exposure. Environ. Health Perspect. 119(3), 403-408.

Chen, A., Cai, B., Dietrich, K. N., Radcliffe, J., and Rogan, W. J. (2007). Lead exposure, IQ, and behavior in urban 5- to 7-year-olds: does lead affect behavior only by lowering IQ? Pediatrics 119(3), e650-e658.

Chetty, C. S., Vemuri, M. C., Campbell, K., and Suresh, C. (2005). Lead-induced cell death of human neuroblastoma cells involves GSH deprivation. Cell Mol. Biol. Lett. 10(3), 413-423.

Chung, W. C., and Auger, A. P. (2013). Gender differences in neurodevelopment and epigenetics. Pflugers Arch. 465(5), 573-584.

Dedesma, C., Chuang, J. Z., Alfinito, P. D., and Sung, C. H. (2006). Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J. Comp Neurol. 496(6), 773-786.

Degawa, M., Arai, H., Kubota, M., and Hashimoto, Y. (1995). Ionic lead, but not other ionic metals (Ni2+, Co2+ and Cd2+), suppresses 2-methoxy-4-aminoazobenzene-mediated cytochrome P450IA2 (CYP1A2) induction in rat liver. Biol. Pharm. Bull. 18(9), 1215-1218.

Dietrich, K. N., Ris, M. D., Succop, P. A., Berger, O. G., and Bornschein, R. L. (2001). Early exposure to lead and juvenile delinquency. Neurotoxicol. Teratol. 23, 511-518.

Dosunmu, R., Alashwal, H., and Zawia, N. H. (2012). Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech. Ageing Dev. 133(6), 435-443.

Dosunmu, R., Wu, J., Adwan, L., Maloney, B., Basha, M. R., McPherson, C. A., Harry, G. J., Rice, D. C., Zawia, N. H., and Lahiri, D. K. (2009). Lifespan profiles of Alzheimer's disease-associated genes and products in monkeys and mice. J. Alzheimers. Dis. 18(1), 211-230.

Dou, C., and Zhang, J. (2011). Effects of lead on neurogenesis during zebrafish embryonic brain development. J. Hazard. Mater. 194, 277-282.

Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., and Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4(11), 1313-1317.

Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., and Frisen, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell 156(5), 1072-1083.

Faulk, C., Barks, A., Liu, K., Goodrich, J. M., and Dolinoy, D. C. (2013). Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics. 5(5), 487-500.

Faulk, C., Liu, K., Barks, A., Goodrich, J. M., and Dolinoy, D. C. (2014). Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics. 9(7), 934-941.

Feng, J., Chang, H., Li, E., and Fan, G. (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J. Neurosci. Res. 79(6), 734-746.

Flora, G., Gupta, D., and Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 5(2), 47-58.

Froehlich, T. E., Lanphear, B. P., Auinger, P., Hornung, R., Epstein, J. N., Braun, J., and Kahn, R. S. (2009). Association of tobacco and lead exposures with attention-deficit/hyperactivity disorder. Pediatrics 124(6), e1054-e1063.

Gauthier-Fisher, A., Lin, D. C., Greeve, M., Kaplan, D. R., Rottapel, R., and Miller, F. D. (2009). Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nat. Neurosci. 12(6), 735-744.

Gogolevskaya, I. K., Veniaminova, N. A., and Kramerov, D. A. (2010). Nucleotide sequences of B1 SINE and 4.5S(I) RNA support a close relationship of zokors to blind mole rats (Spalacinae) and bamboo rats (Rhizomyinae). Gene 460(1-2), 30-38.

Grozdanov, P., Georgiev, O., and Karagyozov, L. (2003). Complete sequence of the 45-kb mouse ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 82(6), 637-643.

Guilarte, T. R., and McGlothan, J. L. (2003). Selective decrease in NR1 subunit splice variant mRNA in the hippocampus of Pb2+-exposed rats: implications for synaptic targeting and cell surface expression of NMDAR complexes. Brain Res. Mol. Brain Res. 113(1-2), 37-43.

Hu, H., Rabinowitz, M., and Smith, D. (1998). Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ. Health Perspect. 106(1), 1-8.

Huang, F., and Schneider, J. S. (2004). Effects of lead exposure on proliferation and differentiation of neural stem cells derived from different regions of embryonic rat brain. Neurotoxicology 25(6), 1001-1012.

Kermani, S., Karbalaie, K., Madani, S. H., Jahangirnejad, A. A., Eslaminejad, M. B., Nasr-Esfahani, M. H., and Baharvand, H. (2008). Effect of lead on proliferation and neural differentiation of mouse bone marrow-mesenchymal stem cells. Toxicol. In Vitro 22(4), 995-1001.

Kiran, K. B., Prabhakara, R. Y., Noble, T., Weddington, K., McDowell, V. P., Rajanna, S., and Bettaiya, R. (2009). Lead-induced alteration of apoptotic proteins in different regions of adult rat brain. Toxicol. Lett. 184(1), 56-60.

Kojima, M., Nemoto, K., Murai, U., Yoshimura, N., Ayabe, Y., and Degawa, M. (2002). Altered gene expression of hepatic lanosterol 14alpha-demethylase (CYP51) in lead nitrate-treated rats. Arch. Toxicol. 76(7), 398-403.

Kornack, D. R., and Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl. Acad. Sci. U. S. A 96(10), 5768-5773.

Kundakovic, M., Lim, S., Gudsnuk, K., and Champagne, F. A. (2013). Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Front Psychiatry 4, 78.

Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I. C., Desai, P., Malone, L. M., and Sweatt, J. D. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281(23), 15763-15773.

Lu, X., Jin, C., Yang, J., Liu, Q., Wu, S., Li, D., Guan, Y., and Cai, Y. (2013). Prenatal and lactational lead exposure enhanced oxidative stress and altered apoptosis status in offspring rats' hippocampus. Biol. Trace Elem. Res. 151(1), 75-84.

Marchetti, C., and Gavazzo, P. (2005). NMDA receptors as targets of heavy metal interaction and toxicity. Neurotox. Res. 8(3-4), 245-258.

Markowitz, M. (2000). Lead poisoning. Pediatr. Rev. 21(10), 327-335.

Menger, Y., Bettscheider, M., Murgatroyd, C., and Spengler, D. (2010). Sex differences in brain epigenetics. Epigenomics. 2(6), 807-821.

Nakanishi, S., and Masu, M. (1994). Molecular diversity and functions of glutamate receptors. Annu. Rev. Biophys. Biomol. Struct. 23, 319-348.

Nakashiba, T., Cushman, J. D., Pelkey, K. A., Renaudineau, S., Buhl, D. L., McHugh, T. J., Rodriguez, B., V, Chittajallu, R., Iwamoto, K. S., McBain, C. J., Fanselow, M. S., and Tonegawa, S. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1), 188-201.

Neal, A. P., Stansfield, K. H., Worley, P. F., Thompson, R. E., and Guilarte, T. R. (2010). Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor-dependent BDNF signaling. Toxicol. Sci. 116(1), 249-263.

Neal, A. P., Worley, P. F., and Guilarte, T. R. (2011). Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology 32(2), 281-289.

Needleman, H. L., McFarland, C., Ness, R. B., Fienberg, S. E., and Tobin, M. J. (2002). Bone lead levels in adjudicated delinquents. A case control study. Neurotoxicol. Teratol. 24(6), 711-717.

Needleman, H. L., Riess, J. A., Tobin, M. J., Biesecker, G. E., and Greenhouse, J. B. (1996). Bone lead levels and delinquent behavior. JAMA 275(5), 363-369.

Nriagu, J. O., Blankson, M. L., and Ocran, K. (1996). Childhood lead poisoning in Africa: a growing public health problem. Sci. Total Environ. 181(2), 93-100.

Peterson, S. M., Zhang, J., Weber, G., and Freeman, J. L. (2011). Global gene expression analysis reveals dynamic and developmental stage-dependent enrichment of lead-induced neurological gene alterations. Environ. Health Perspect. 119(5), 615-621.

Piomelli, S. (2002). Childhood lead poisoning. Pediatr. Clin. North Am. 49(6), 1285-304,

Rastogi, S. K. (2008). Renal effects of environmental and occupational lead exposure. Indian J. Occup. Environ. Med. 12(3), 103-106.

Riva, M. A., Lafranconi, A., D'Orso, M. I., and Cesana, G. (2012). Lead poisoning: historical aspects of a paradigmatic "occupational and environmental disease". Saf Health Work 3(1), 11-16.

Rountree, M. R., Bachman, K. E., Herman, J. G., and Baylin, S. B. (2001). DNA methylation, chromatin inheritance, and cancer. Oncogene 20(24), 3156-3165.

Sachdev, P., Menon, S., Kastner, D. B., Chuang, J. Z., Yeh, T. Y., Conde, C., Caceres, A., Sung, C. H., and Sakmar, T. P. (2007). G protein beta gamma subunit interaction with the dynein light-chain component Tctex-1 regulates neurite outgrowth. EMBO J. 26(11), 2621-2632.

Sanchez-Martin, F. J., Fan, Y., Lindquist, D. M., Xia, Y., and Puga, A. (2013). Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells. PLoS. One. 8(11), e80558.

Schneider, J. S., Kidd, S. K., and Anderson, D. W. (2013). Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol. Lett. 217(1), 75-81.

Schwartz, J. (1995). Lead, blood pressure, and cardiovascular disease in men. Arch. Environ. Health 50(1), 31-37.

Senut, M. C., Sen, A., Cingolani, P., Shaik, A., Land, S. J., and Ruden, D. M. (2014). Lead exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicol. Sci. 139(1), 142-161.

Smith, T. C., Wang, L. Y., and Howe, J. R. (1999). Distinct kainate receptor phenotypes in immature and mature mouse cerebellar granule cells. J. Physiol 517 ( Pt 1), 51-58.

Stansfield, K. H., Pilsner, J. R., Lu, Q., Wright, R. O., and Guilarte, T. R. (2012). Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): implications for an environmental basis of neurodevelopmental disorders. Toxicol. Sci. 127(1), 277-295.

Swanson, G. T., Feldmeyer, D., Kaneda, M., and Cull-Candy, S. G. (1996). Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J. Physiol 492 ( Pt 1), 129-142.

Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., and Greenberg, M. E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20(4), 709-726.

Toscano, C. D., and Guilarte, T. R. (2005). Lead neurotoxicity: from exposure to molecular effects. Brain Res. Brain Res. Rev. 49(3), 529-554.

Trent, S., Fry, J. P., Ojarikre, O. A., and Davies, W. (2014). Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder. Mol. Autism 5(1), 21.

Tseng, Y. Y., Gruzdeva, N., Li, A., Chuang, J. Z., and Sung, C. H. (2010). Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain. J. Comp Neurol. 518(16), 3327-3342.

Wright, J. P., Dietrich, K. N., Ris, M. D., Hornung, R. W., Wessel, S. D., Lanphear, B. P., Ho, M., and Rae, M. N. (2008). Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS. Med. 5(5), e101.

Wu, J., Basha, M. R., Brock, B., Cox, D. P., Cardozo-Pelaez, F., McPherson, C. A., Harry, J., Rice, D. C., Maloney, B., Chen, D., Lahiri, D. K., and Zawia, N. H. (2008). Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J. Neurosci. 28(1), 3-9.

Yuan, W., Holland, S. K., Cecil, K. M., Dietrich, K. N., Wessel, S. D., Altaye, M., Hornung, R. W., Ris, M. D., Egelhoff, J. C., and Lanphear, B. P. (2006). The impact of early childhood lead exposure on brain organization: a functional magnetic resonance imaging study of language function. Pediatrics 118(3), 971-977.

Downloads

Published

2024-03-01

Issue

Section

Articles

How to Cite

Sánchez-Martín, F. J., & Puga, A. (2024). Gene Regulation and Epigenetic Effects of Lead Exposure. Toxicology Digest, 1(1), 35-45. https://toxicologydigest.org.ng/index.php/home/article/view/45

Share